AD-A256 372 h
L

Type Evolution and Instance Adaptation

Stewart M. Clamen
June 1992
CMU-CS-92-133

w T Ay
E) 8§
-4 ﬁ B '2%—«?#_'
ELECTE iﬂi‘“"”n School of Computer Science
0CT 081992 & %‘, Carnegie Mellon University

B{ &5 Pittsburgh, PA 15213-3891

Abstract

Schema evolution support is an important facility for object-oriented database (OODB) systems.
While existing OODB systems provide for limited forms of evolution, including modification to
the database schema and reorganization of affected instances, we find their support insufficient.
Specific deficiencies are 1) the lack of compatibility support for old applications, and 2) the lack
of ability to install arbitrary changes upon the schema and database.

This paper examines the limitations of existing schemes, and offers a more general framework for
specifying and reasoning about the evolution of class definitions and the adaptation of existing,
persistent instances to those new definitions.

This research was sponsored in part by the Avionics Lab, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C-1465, Arpa Order No. 7597; and by the Office of Naval Research under Contract
N006014-88-K-0641. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S.
Government.

e —— e

:."::' b 3 EDA (2 ¥ "’HJ(_d !

=,
2-26756
@7 FEE TP

w2 L3

Keywords: Schema evolution, object-oriented databases, class versioning, instance
adaptation, compatibility

Introduction

Database systems exist to support the long-term persistence of data. It is natural to
expect that, over time, needs will change and that those changes will necessitate a
modification to the interface for the persistent data. In an object-oriented database
(OODB) system, such a situation would motivate an evolution of the database schema.
For this reason, support for schema evolution is a required facility in any serious
OODB system.

An OODB database schema consists of class definitions and an inheritance hier-
archy. A class is a tuple of methods and attributes. The database is populated by
instances of those classes, with values for each of the attributes. The schema describes
the interface between the set of application programs and the persistent repository of
objects. When the schema changes so does the interface, possibly leaving incompat-
ible elements on both sides. We are interested in the problem of managing existing
database objects, what we call the instance adaptation problem. This paper exam-
ines the limitations of existing adaptation schemes and offers a more general framework
for specifying and reasoning about the evolution of class definitions and the adaptation
of existing, persistent instances to those new definitions.

Two general instance adaptation strategies have been identified and implemented
by various OQODB systems. The first strategy, conversion, restructures the affected
instances to conform to the representation of their modified classes. Conversion is
supported by the ORION {2, 16] and GemStone [6] systems.

The primary shortcoming of the conversion approach is its lack of support for pro-
gram compatibility. By discarding the former schema, application programs that
formerly interacted with the database through the changed parts of the interface are
now obsolete. This is an especially significant problem when modification (or even re-
compilation) of the application program is impossible (e.g., commercially distributed
software).

Rather than redefining the schema and converting the instances, the second strategy,
emulation, is based on a class versioning scheme. Each class evolution defines a
new version of the class and old class definitions persist indefinitely. Instances and
applications are associated with a particular version of a class and the runtime system
is responsible for simulating the semantics of the new interface on top of instances
of the old, or vice versa. Since the former schema is not discarded but retained as
an alternate interface, the emulation scheme provides program compatibility. Such a
facility has been developed for the Encore system [21].

Encore pays for this additional functionality with a loss in runtime efficiency. Under
a conversion scheme, the cost of the evolution is a function of the number of affected

3

instances. Once converted, an old instance can be referenced at the same cost as a
newly-created one. However, the cost of emulation is paid whenever there is a version
conflict between the application and a referenced instance.

We feel however that program compatibility among schema versions is a very de-
sirable feature under certain circumstances. It can be of great utility in situations
where the database is shared by a variety of applications, as in Computer-Aided Design
or Office Automation Systems, when the database acts as a common repository for
information, accessed by a variety of applications.

Our scheme supports program compatibility by maintaining multiple versions of the
database scheme. Old programs can continue to interact with the database (on both
new instances and old) using the former interface. Rather than emulating the evolved
semantics all at runtime, efficiency is gained by representing each object as an instance
of each version of its class. In this manner, our system effects a compromise between
the functionality of emulation and the efficiency of conversion.

Another failing common to the conversion-based evolution facilities is the limita-
tions placed on the variety of schema evolutions that can be performed. Most existing
systems restrict admissible evolutions to a predefined lisi of schema! change operations
(e.g., adding/deleting an attribute or method from a class, altering a class’s inheritance
list). The length of this list might vary from system to system, but they are all similar
in the way they support change: The set of changes that can be performed are those
which require either a fized conversion of ezisting instances or no instance conversion
at all. Unfortunately, change is inherently unpredictable. A desired evolution is some-
times revolutionary and under such circumstances, these systems prevent the database
programmer from performing the desired changes.

We are interested in supporting evolution in a liberal rather than a conservative
fashion; rather than the system offering a list of possible evolutions to the programmer,
the programmer should be able to specify arbitrary evolutions and rely on the system
for assistance and verification. Change is a natural occurrence in any engineering task,
and engineering-support systems should help rather than hinder when an evolution is
required.

Although Encore’s emulation facility restricts the breadth of class evolution that
can be installed, the restrictions are of a different form. Since instances, once created,
cannot change their class-version, evolutions that require additional storage for each
instance cannot be defined.

!Throughout this paper, schema refers to the complete collection of class definitions and class refers
to one a particular type.

In the remainder of this paper, we present a model for specifying schema evolutions
and instance adaptation strategies. Our system supports program compatibility, accepts
a larger variety of evolutions than existing systems, and supports a variety of options
to make it more efficient than the pure emulation facility of Encore.

Previous Schemes

Before describing our system in detail, we present a more detailed description of some
important, existing systems.- Newer systems, representing related work, are detailed
later in the paper (p. 17).

ORION

The most ambitious and effective example of a schema evolution support facility is
that provided by ORION {2, 16, 17). ORION provides a catalogue of schema evolution
operations. It also defines a database model in the form of invariants that must be
preserved across any valid evolution operation and a set of rules that instruct the system
how best to maintain those invariants. Under this model, a schema designer specifies an
evolution in terms of the taxonomy, the system verifies the evolution by determining if
it is consistent with the invariants and then adjusts the schema and database according
to the appropriate rules.

ORION can only perform those evolutions for which it has a rule defined. The set
of rules is fixed. For example, changes to the domain of an attribute of a class are
restricted to generalizations of that domain. This restriction exists because there is no
facility in ORION’s evolution language for defining a procedure to convert old instance
values. Generalizations of the attribute domain are allowed since this evolution does
not require existing instances to be modified.

In ORION, evolutions are performed on a unique schema. Under this scheme,
there is no compatibility support for old programs and, depending on the evolution,
information contained in the instances might be lost at conversion time. (e.g., deletion
of an attribute.)

Encore

Encore implements emulation via user-defined exception handling routines. Whenever
there is a version conflict between the program and the referenced instance, the routine
associated with that method or instance (and those pair of versions) is called. The
routine is expected to make the method’s invocation conform to the expectations of
the instance or make the return value from the method invocation consistent with the

5

expectations of the calling program, whichever is appropriate. It is known, however,
that certain evolutions cannot be modeled adequately under this scheme. The problem
stems from the fact that each object can only instantiate a single version. If an evolution
includes the addition (subtraction) of information (e.g., the addition (deletion) of an
attribute), there is no place for older (newer) instances to store an associated value. The
best a programmer could do in such a system is associate a default attribute value for
all instances of older (newer) type-versions by installing an exception handling routine
to return the value when an application attempts to reference that attribute from an
old (new) instance [21].

The Common Lisp Object System

CLOS [22, 15], while not an OODB system, provides extended support for class evolu-
tion nonetheless. As Common Lisp system development is performed in an interactive
context, class redefinition is a frequent occurrence. Rather than discard all existing
instances, CLOS converts them according to a policy defined by the user. The default
policy is to reinitialize attribute values that no longer correspond to the attribute do-
main and delete attribute slots that are no longer represented in the class definition.
Users can override this policy by defining their own method that is called automatically
by the system. This method is passed as arguments the old and new slot values, so
relationships between deleted and added attributes can be enforced [22, p.859].

Database Model

As a basis for our discussion, we will employ a simplified object-oriented database
model.

All objects found in the database are instances of classes. A class is record type of
attributes and methods. An attribute is a private, named, typed representation of state,
which can be accessed only by class methods. Methods are descriptions of behaviour
and can be public or private to the class. Under these restrictions, the set of public
methods describe the interface of the class, while the attributes model its state. Classes
are arranged in a type heterarchy (i.e., a directed, acyclic graph): a class’s interface
must be a generalization of the union of its superclasseés (supertypes); the specification
of each inherited method must be at least as general as those of its superclasses. (It
should also be stated that methods must have semantics consistent with those of their
class’s supertypes.) Instances of a class that is a declared subtype of another class can
be referenced as if they were instances of the superclass.

In addition to the classes, other supported types include primitive types (e.g., inte-
ger, floating point number, character) and arrays.

6

2D-Shape

Interface:
- area getArea()
- length getPerimeter()

Representation:
none

Circle
Interface:
(subtype of 2D-Shape)
- new(1length)
- area getArea()
- length getPerimeter()
- length getCircumference()

Representation:
- length radius

Triangle
Interface:
(subtype of 2D-Shape)
- new(length, length, length)
- area getArea()
- length getPerimeter()

Representation:
- length side{1..3]

Figure 1: Sample Database Subschema

The set of defined classes comprise the database schema. Each class has an associ-
ated unique ID. All objects found in the database are instances of classes. Each instance
is identified by a unique Object ID (OID), and is tagged with its Class ID (CID).

The subsequent section extends this basic model to support class versioning and

instance adaptation.

[(Accesicin o —"'”'”5 =
NTIS CRAGI _
OTIC 1A% .

Unannouaced i
Justibiczyions

Dist: i tio

N
Avusiizointy 7o o

U A .
A .
-

Dist Uil

A-

!
]
!
L

i QUALITY TNGPECTED 1

Conversion and Compatibility

Schema Modification vs. Class Versioning

The schema evolution support provided by such systems as ORION and GemStone is
restricted to what Kim calls schema modification, that is, the direct modification of a
single logical schema [17]. When only one database schema exists, it is appropriate for
the system t~ convert all existing instances. From a database consistency perspective,
it must appear that all instances have been converted when the evolution operation is
applied.? In fact, we would claim that it is the only sensible approach.

As has already been stated, however, conversion might render the instances inac-
cessible to applications that had previously referenced them. The adaptation strategy
converts the instances but does not alter procedural references. Thus, application pro-
grams written and compiled under the old schema may now be obsolete, unable to access
either the old, now converted, instances, or the ones created under the new schema.

A reasonable direction of research here would be to provide some automated mech-
anisms to assist with program conversion; it is an active line of research [13, 1]. In the
OODB context, some work has been conducted at providing support to alert the pro-
grammer about the procedural dependencies of their evolution operation [9]. But this
is not the only possible solution. Rather than adjust programs to conform to the data,
it would seem easier to adjust the data to conform to the existing programs. Also, it is
not always possible to alter, or even recompile, programs (e.g., commercially available
software). This lack of compatibility support is our primary motivation for adopting a
class versioning design for evolution management and support.

Under a class versioning scheme, multiple interfaces to a class, one per version, are
defined. When compiled, application programs are associated with a single version of
each of the classes it refers to; a schema- configuration, if you will. With the database
populated with instances of multiple versions of a class, the runtime system must resolve
discrepancies between the version expected by the application and that of the referenced
instance.

Objects Instantiating Multiple Versions

Under the original Encore scheme (21}, instances never change their type-version. Aware
of the restrictions this causes (¢f., previous section), Zdonik proposed a scheme whereby
an existing instance can be “wrapped” with extra storage and a new interface, enabling
it to be a full-fledged instance of a new type-version [24]. While still accessible through
its original interface/version, the wrapped object can also be manipulated through

?Whether the instances are converted eagerly or lazily becomes an implementation issue.

8

== B

\.

Figure 2: Zdonik’s Wrapping Scheme: as in the Encore design, multiple
interfaces to the class are preserved. Here, extra space is allocated for the
attributes added as a result of the evolution, and applications can access
the instance through either the old or new interfaces.

the new interface. Thus, if the class evolution specifies the addition of an attribute,
the wrapping mechanism could allocate storage for the new slot in existing instances,
without denying backward compatibility. (cf., Figure 2)

Our proposed scheme is a generalization of this approach. Much as each class has
multiple versions, each instance is composed of multiple facets. Theoretically, each
facet encapsulates the state of the instance for a different interface (i.e., version). The
representation of these instances is, abstractly, a disjoint union of the representation of
each of the versions, and it is useful to consider the representation as exactly that. As
will be explained later, however, a wide variety of representations are possible.

As an example, consider a class Undergraduate, originally including attributes Name,
Program, and Class, and a new version of the class with the attributes Name, Id Number,
Advisor, and Class Year. (Class is one of {Freshman, Sophomore, Junior, Senior}, while
Class Year is the year the student is expected to graduate.) Program is the degree
program in which the student is enrolled, and Advisor is his academic advisor. While
instances of Undergraduate in the database will contain all seven distinct attribute slots,
any particular application will be restricted to one version and thus only have explicit
access to one facet.

In reasoning about the relationship between any two versions of a class,3 it is useful
to divide the attributes into these four groups:

Shared: when an attribute is common to both versions,*

3For explanatory purposes, imagine that we are describing a class consisting of only two versions,
and where the database is populated by instances of both.
*Common in the semantic sense, not just having the same name or type.

9

=@ Name
-— | —— shared attribute
1d Number
DegreePgm &-4.._ —3 derived attribute
______ - -

Class @
.\"0 Class Year

Name

---> dependent attribute

J

Figure 3: Disjoint union representation of the versioned class Undergraduate

Independent: when an attribute’s value cannot be affected by any modifications to
the attribute values in the other facet.

Derived: when an attribute’s value can be derived directly from the values of the
attributes in the other facet,

Dependent: when an attribute’s value is affected by changes in the values of attributes
in the other facet, but cannot be computed solely from those values.

In our example, the Name attribute is shared by the versions, while |d Number is
independent. Class and Class Year are both derived attributes since, given the current
date, it is possible to derive one from the other. Advisor is a dependent attribute,
since a change in Program might necessitate a change in advisor. Likewise, Program
is a dependent attribute, since a change in advisor might imply that the student has
switched degree programs. (cf., Figure 3)

Zdonik et al. [21, 24] almost always cite evolutions involving independent or derived
attributes in their examples. The original Encore emulation scheme is adequate for
supporting evolutions that introduce shared and derived attributes. Zdonik’s wrapping
proposal addresses the probleus associated with independent attributes. Our proposed
scheme, however, will provide a mechanism for managing class evolutions that include
dependent attributes. (See Table 1 (p.19) for a comparison of the evolution capabilities
of various systems.)

Interacting with Multifaceted Instances (Example)

Consider an evolution specification language which can categorize attributes. This is
accomplished by associating extra information with each attribute, namely:

10

- " r \
A A
B B
C C
[) D
- J \ /
(a) ()]

Figure 4: Some simple evolutions: (a)illustrates the relationships following
the addition of an independent attribute, (b) shows the addition of a derived
attribute.

with Shared attributes, associate the name of the corresponding attribute from
another version,

with Derived attributes — a function for determining its value in terms of the values
of the attributes in the other version, and

with Dependent attributes — a function for determining its value in terms of the
values of the attributes in both versions (i.e., the entire object), and

with Independent attributes — nothing extra at all.

Representing the class instances as a disjoint union of the version facets, as described
earlier, consistency between the facets can be maintained according to the following
procedure:

Whenever an attribute value of a facet is modified, those attributes in the
other facet that depend on it must be updated. For shared attributes, the
new value is copied; for dependent and derived attributes, the dependency
functions are applied and the result written into the (attribute) slot in the
other facet.

The remainder of this section consists of an example:

11

Consider a multifaceted instance of the Undergraduate versioned class, rep-
resented graphically as follows:

r)

John Smith
| John Smith
12345678
Comp Sci & Eng
Dr. Mary Jones
[V k.
1994
\.. 7

Imagine that John Smith returns to university after his first summer vaca-
tion and wishes to change to the undergraduate Math program. Also, he
had taken some summer classes that have given him enough credits to grad-
uate a year early. The change to his data record are recorded through an
application program employing the first version of the Undergraduate class.
The system must now propagate those modifications to the second facet.

The attributes Class and Class Year can be derived in terms of each of other.
A reasonable derivation function for Class Year is:

cy + 3 if Year = Freshman
cy +2 if Year = Sophomore
cy +1 if Year = Junior

cy if Year = Senior

ClassYear =

Where cy is the current year. The Advisor attribute is dependent upon the
value of the Program attribute, but not completely derivable. A reasonable
dependency function is:

Advisor if Advisor € Program faculty
nil otherwise

Advisor = {

Since there is not enough information to derive it, the student’s advisor will
have to be filled in later.

Applying these functions in concert with the desired changes to John Smith’s
record, the multifaceted instance becomes:

12

John Smith
John Smith
12345678
Mathematics
NIL
Junior
1993

Representing Multifaceted Instances

In the previous section we described the semantics of our schema versioning scheme. In
this section we address the issue of how to realize these multifaceted instances physically
in the database.

Our basis for consideration is a system which implements the design as described:
class evolutions are defined by creating a new version of the class; a new facet (corre-
sponding to the new version) is associated with each instance of the class and initialized
according to a user-defined procedure. Each application program interacts with the in-
stances through a single version (interface) and modifications to attribute slots on the
“visible” facet are immediately propagated to the other facets, using a mechanism sim-
ilar to the trigger facility found in many relational and AI database systems [23, 12].

The most obvious target for improvement in this scheme is how new facets are added.
The allocation and initialization of new facets for existing instances at evolution time
can be deferred until such time as the facets are actually needed (i.e., by an application).
In this way, some of the runtime and most of the space costs of supporting multiple
versions are only spent when absolutely necessary.

The strategy of deferring the actual maintenance of a dependency constraint until
its effect is actually required can be applied as well to the propagation of information
among the facets of an instance. Rather than update the attribute values of the other
facet(s) each time a facet attribute is modified, one need only bring a facet up-to-date
when there is an attempt to access it. This scheme can be supported by associating a
flag with each facet indicating whether the facet is up-to-date with respect to the most
recently modified facet. The application of read methods on facets with an unset flag
are preceded by a resynchronization operation, which performs any necessary updates
and sets the flag. 4

This scheme reduces overall runtime expense, since the resynchronization step is not
performed in concert with every update operation, as was previously the case. However,
it does increase the potential cost of previously inexpensive read operations.

13

John Smith

Comp Sci & Eng 12345678

Sophomore Dr. Mary Jones

1994

Figure 5: Multifaceted instance representation using common slot for
shared attributes

To this point, we have been very liberal with our allocation of space for instance
representation. Although the lazy allocation of facets conserves some space in the short
run, the disjoint union representation model implies that every instance of a versioned
class will have a complete collection of facets. There are a few optimizations that could
be performed to reduce space requirements.

The first space-saving improvement entails having each set of shared attributes
occupy a single slot in the multifaceted representation. A performance improvement
might also be realized here, since slot sharing reduces the expense and/or frequency of
update propagations. (cf., Figure 5 (p.14).)

Under certain circumstances, the slot associated with a derived attribute can be
recovered as well. If an inverse procedure to the derivation function is known to the
system, then the attribute can be simulated by appropriate reader and writer methods.
For many evolutions, the inverse procedure appears as the derivation function for the
related attribute in the other facet. The Year and Class Year attributes in our example
(p.9) are related in that way. (cf., Figure 6 (p.15).)

From a runtime performance perspective, this space optimization reduces the ex-
pense of write methods while making read methods more costly. The slot allocated
for a derived attribute acts as a cache for its derivation function and, depending on
the frequency of modifications to its dependent attributes in the other facet(s), its
maintenance might be more time-efficient.

In fact, the emulation scheme of the Encore system is an extreme case on the space
vs. time spectrum. In the Encore system, however, emulation was the only option. In
our scheme, the programmer could choose to completely emulate a facet in situations
where time is less of a concern than space, and where all the attributes are derivable
from other facets.

14

John Smith John Smith
Comp Sci & Eng 12345-678 123-45-678
Sophomore Dr. Mary Jones Dr. Mary Jones

(a) | (b)

Figure 6: Mouitifaceted instance representation minimizing derived at-
tribute allocation. For the Undergraduate class, two minimizations exist.

Forcing an Adaptation Strategy

While important in general, program compatibility is not always required (e.g., a
database with a single application program and a single user). In such situations one
should be able to employ the minimally expensive strategy and instruct the system to
convert existing instances fully and discard (or perhaps archive) the old information.
Furthermore, conversion and compatibility are not mutually exclusive. As long as an
inverse conversion procedure is known, one could convert and emulate the older inter-
face. This might be useful when you want to preserve compatibility, but expect that
it will be needed infrequently enough that you are willing to pay the cost of emulation
in those instances. If an application tends to reference a distinct subset of the instance
collection, one could employ a strategy that converts (on access) instances to the version
of the application.> The importance characteristic of this evolution architecture is that
the database programmer has access to the control knobs and can tune the evolution
strategy to improve performance.

Sometimes, modification of the database or its schema is impossible. Databases
might be read-only for permission (e.g., remote database exported as a public service) or
licensing reasons (e.g., reference materials on CD-ROM). In such situations, something
resembling Zdonik’s wrapping scheme (c¢f., p.8) must be used, with the wrapper actually
residing in a separate database.

Subtyping

We have, to this point, failed to explain how our class evolution and instance adap-
tation scheme copes with our model’s subtyping mechanism. We first identify what

®This is the approach taken by Monk’s CLOSQL system [19]. See p.18 for details.

15

characteristics of subtyping are problematic with respect to evolution and adaptation
and then motivate our solution.

Evolutions relating to subtyping can be divided into two categories: changes to the
members of a class’s set of supertypes, and evolutions to the superclasses (supertypes)
themselves. The former present no special problem: while the addition of a new super-
type might necessitate changes to the class’s interface, these changes are no different
from independent evolutions on method specifications.

Unfortunately, support for evolutions upon a superclass (i.e., a class with declared
subtypes) is problematic. Our basic database model specifies the following:

A class’s interface must be a generalization of the union of its superclasses
(supertypes); the specification of each inherited method must be at least as
general as those of its superclasses.

The essence of the problem lies in the fact that a class could evolve in such a way
as to interfere with its subtypes. As an illustrative example, reconsider the subschema
example depicted in Figure 1 (p.7), where two classes, Circle and Triangle, are declared
to be subtypes of a third class, 2D-Shape. Consider the following two evolutions on
2D-Shape: 1) where the public method, getPerimeter, is removed, and 2) where a new
method, draw, is added to the interface.

The removal of getPerimeter from the interface does not affect the subtype classes,
which can continue to export getPerimeter in their interfaces and maintain their subtype
relationship with the new version of the class 2D-Shape. With the introduction of the
method draw to the 2D-Shape interface, however, the Circle and Triangle classes cannot
(without being evolved themselves) be subtypes classes to the new version of 2D-Shape.

Note that not all method additions cause this problem: if one were to reintroduce
getPerimeter to the interface of 2D-Shape, the subtype classes, which are already ex-
porting a compatible method (i.e., their signatures are a supertype of the signature of
the corresponding method from the supertype class), could remain subtype classes to
the new version.

The problem introduced by the addition of methods to superclasses has been ad-
dressed in previous work. The ORION system disallowed evolutions that upset the type
graph [2]. Zicari has proposed a transaction model, which would allow the programmer
to evolve the class and its subtype classes in one atomic, evolution operation [26, 25].
Under our liberal evolution scheme, a third option is possible: the versioning of the
type heterarchy.

With the versioning of the type heterarchy, type membership would depend on the
version of the superclass being referenced: following the addition of an incompatible
public method to a superclass, instances of the declared subtypes would be accessible

16

as instances of the old version of the superclass, but not as instances of the new version.
Class versioning was introduced in our scheme so as to allow instances to remain ac-
cessible in across evolutions to their constituent classes, but the versioning of the type
heterarchy compromises compatibility.

The best (i.e., the most practical) approach would be to evolve the entire subtype
graph when evolutions to the root class would “disown” its subtype classes. However,
just as programmers are free to not support compatibility, they should have the freedom
to version the type graph, if they feel it appropriate.

Compound Evolutions and Version Configurations

Evolutions to supertype classes motivate support for the atomic evolution of multiple
classes. Zicari proposed such a mechanism to support compound evolutions on classes
(a primitive set of evolution operations was supplied, forming a basis for all supported
evolutions) [26, 25]. A similar system can be employed here to support possible evo-
lutions on type subgraphs, as well as some other compound evolutions, such as the
telescope evolution, described in detail below (p. 20).

Just as an instance adaptation strategy is required for each evolution, a correspond- _
ing adaptation construct for evolution transactions is necessary. This construct, which
we call a version configuration, maintains the version dependencies among the evolved
classes. It would contain the knowledge that a particular subclass instance needs to be
adapted to a particular version before it could be accessed as an instance of a particular
superclass (supertype) version.

Related Work

There are a number of other research projects currently concerned with evolution in
the OODB context.

Bertino [4] presents a schema evolution language which is an OODB adaptation of
the view mechanism found in many relational database systems. Her primary inno-
vations are the support of inheritance and object IDs (OIDs) for view instances, two
important characteristics of OODB models that are nnt present in the relational model.
View instances with OIDs are physically realized in the database, enabling the view
mechanism to support evolutions that specify the addition of an attribute, as envi-
sioned by Zdonik [24]. However, Bertino’s scheme focuses on how evolutions affect the
schema. It is not concerned explicitly with the effects upon the instances nor with
compatibility issues.

17

Zicari proposed [26, 25] a sophisticated evolution facility, providing an advisory pro-
gram to determine at evolution time whether the evolution is consistent with inter-class
and method dependencies. Evolution transactions are introduced to allow for com-
pound evolution operations. However, Zicari’s lack of concern for instance adaptation
is evident; by defining the attribute-renaming evolution as the atomic composition of
the attribute-delete and attribute-add operations, his scheme fails at the instance level.

Monk’s CLOSQL [19] implements an class versioning scheme, but employs a con-
version adaptation strategy. Instances are converted when there is a version conflict,
but unlike ORION and GemStone, CLOSQL can convert instances to older versions of
the class if necessary.

Lerner’s OTGen design [18] addresses the problem of complex evolutions requiring
major structural conversions of the database (e.g., information moving between classes,
sharing of data using pointers) using a special-purpose language to specify instance
conversion procedures. As it was developed in an integrated database context, where
the entire application set is recompiled” whenever the schema changes, versioning and
compatibility were not considered. However, Lerner’s language supports a variety of
evolutions and associated adaptations that are not addressed in many other papers,
most notably evolutions that alter the structure of shared component objects.

Bratsberg [5] has been developing a unified semantic model of evolution for object-
oriented systems. Similar to our work, compatibility for old clients is described in the
context of relations, maintaining consistency between views.

One significant difference between our respective threads of research is our concen-
tration on the variety of adaptation strategies and representations for the (possibly)
multifaceted instances. This is reflected in this paper’s discussion of the range of pos-
sible adaptation strategies, depending on the (expected) access patterns of the affected
instances.

In addition, Bratsberg introduces an alternative consistency maintenance scheme,
operating at the methkod rather than the representation level. Such a scheme might be
more suitable in situations where the native representations of the various versions are
drastically different or when the relations among the various representation attributes
is hard to define.

18

Description of Evolution ORION Encore Bertino[4] Us

Add/delete/rename a method

Add an attribute

Delete an attribute

Generalize the domain of an attribute

Change (arbitrarily) the domain ol an attribute

Telescope® ‘

e el
~sfe e x [«
< JJSISIed
<Xl

Change supertypes

Table 1: Some evolutions and which systems support them. Note that
none of the other systems directly address instance adaptation.

l

%This evolution cannot be defined directly, but can be implemented by replacing the attribute in the
new version with generic methods for reading and writing.[3]

®See p. 20 for definition.

“Support for telescope evolutions is not possible in our database model, as currently presented. (cf.,
p. 20 for discussion.)

19

Ongoing Work

A number of shortcomings of my system have been mentioned above. This section
discusses a few of them in more detail, and outlines some possible approaches for their
removal.

Data Model Extensions and New Evolutions

Our basic model was designed for demonstrative purposes; while providing an ade-
quately powerful model for our discussion of schema evolution and instance adaptation,
it lacks some of the features characteristic of many real-world OODBMS and thus fails
to address certain evolutions that occur under such systems. We describe how our de-
sign could be extended to cope with some of the other evolutions identified in previous
works, and the problems these extensions introduce.

Pointer references and Telescope Evolutions

Our database model can be extended to allow for pointer references, so that objects can
be multiply-referenced. (Objects could already be embedded into other objects in our
model, by typing a class attribute to another class.) With the introduction of pointer
references, however, telescope evolutions, becomes troublesome to support.

A telescope evolution involves the simultaneous modification to the representation
of two classes: an attribute of one class is moved out of a class to become an attribute
(or set of attributes) of a dependent class {20, 4]. (An example is presented in Figure
7 (p.21).) The reverse operation, termed aggregate [20] sees a set of attributes moved
“down” into a component class.

Similar to the renaming of an attribute, the telescope evolution cannot be simulated
by attribute-delete and attribute-add operations on the appropriate classes, because
we are concerned with preserving the values of the telescoped attribute at instance
adaptation time.

Note that telescoping is a compound, inter-modular evolution. In such a situation,
it is reasonable to expect the adaptation routine to be inter-modular as well, requiring
access to the actual attributes of class instances, and not just its public methods.

First, let us imagine that compatibility is not a concern; that we are solely interested
in converting instance-pairs of the old class definitions to pairs of the new definitions. In
this case, we observe that both objects (i.e., the referring object and the object being
referred to) must be converted simultaneously; otherwise the value of the telescoped
attribute would be lost. The version configuration facility described earlier (p.17) is
insufficient to the task because, in order to perform the adaptation, the (new) object

20

Emp: Emp’:

Name Name
ID num ID num
job job
address: Addr address: Addr’
country
Addr:
country Addr’:
city city
street street
number number

(a) (b)

Figure 7: Example of a telescope evolution: The country attribute of the
Addr class is moved “up” into the Emp class. Figure (a) illustrates the
original schema, Figure (b) the evolved one. Note that from the point of
view of the Addr Class, the evolution resembles an attribute deletion.

gaining the attribute requires access to the attribute found in the (old) object, before it
is discarded. Another more problematic, issue concerns multiply-referenced objects —
a common occurrence, since information sharing is probably why the pointer reference
was employed in the first place. If an object is converted, so must all objects that refer
to it.

Ironically, these problems are simplified somewhat if we are willing to provide com-
patibility support. We do not have to worry about the value of the telescoped attribute
being lost, because it will continue to be stored in the old facet of the object. Likewise,
we do not need to adapt all objects referring to an adapting instance, since the referring
objects can continue to access the adapted object through its former interface — just
like older client applications. It should be observed that in moving an attribute “up”
from the component to the referring class, backward compatibility would necessitate the
addition of a back pointer (from the component to each referring object). (See Figure
8 (p.22) for an illustration.) This back-pointer is similar in purpose to the connec-
tion relationship introduced by Bertino [4, p. 148]. (For the opposite evolution, i.e.,
aggregate, a similar pointer would be needed for forward compatibility purposes.)

21

Emp/Emp’: Addr/Addr’:
{

3 r)
Name
ID num | coun | | eEmp’ |
job city
["addr: Addr addr: Addr’ street
country number
L J \ J

Figure 8: Data representation for compatibility support in the presence
of a telescope evolution. A pointer back from Addr to Emp is required for
compatibility purposes.

Unfortunately, a serious problem remains. The multi-faceted representations of the
various objects involved will preserve multiple copies of the telescoped attribute, copies
that must remain consistent with each other. Our existing model provides for the
consistency maintenance among the facets of an object, but not across objects. Future
research will determine how to enhance our model to cope with this problem.

Inheritance

By inheritance, we refer to the ability of a subclass to inherit the representation of
its superclass, in addition to the external interface. Such mechanisms have been char-
acteristic of many object-oriented languages and OODB systems. The difficulties in
integrating such a mechanism with our evolution framework stems from the way the
modularity barrier is broken; a subclass has access to the internal state it inherited from
its superclasses. Thus, evolutions involving the representation of a class affect all its
subclasses as well. For such evolutions, both classes should be evolved simultaneously,
as has been discussed before in the context of subtyping. (p.17)

It has been noted elsewhere that specialization (i.e., subclassing) is nothing but one
type of evolution[7, 5]. Within oz evolution scheme, subclassing, might not be required
as an independent mechanism; its features are likely supportable by the adaptation
system. (See Figure 9 (p.23) for an example.) This issue will be investigated in a future
paper.

Merging Two Arbitrary Classes

Another interesting evolution is the merging of two arbitrary classes into one. Such
evolutions are feasible provided that there is a one-to-one relationship between the

22

(Ny
a8
A: b
a [3
b
c 3
- J
(b)
B: C:
a a 1)
b b a
c c b
d f c
e | f I
(a) (©

Figure 9: Subclassing as a Specialization Evolution: The standard sub-
classing mechanism could be implemented using a restricted form of class
versioning and instance adaptation. Figure (a) depicts three classes: B and
C as subclasses of A. Figure (b) presents Class B as a new version of A. Fig-
ure (c) does likewise for C. Like the formal subclasses, the versions depicted
in (b) and (c) can substitute for (i.e., are compatible with) instances of A.

instances of the affected classes. For backward compatibility, the resulting class should
be able to emulate the features of the two classes it was evolved from, much the way a
subclass emulates its multiple superclasses in a system supporting multiple inheritance.

23

Programming an Adaptation Strategy

Our system as described has more versatility than ORION’s facility because it supports
user-defined instance adaptation information. Consistent with our desire to aid the
schema designer, we would like to provide the ability to install user-defined adaptation
strategies based on disjoint union data model. A few examples include:

Offline conversions: For example, a database that must be highly available during
business hours could maintain a log of the instances touched during the day and
spend the idle overnight hours converting them. If the economics warrant it,
instances could monitor their usage patterns and adapt their representations to
their applications.

Online optimizations: Instead of converting all instances to a single representation,
the system could employ different representations, depending on the access pattern
to the object. For instance, in a situation where one of several existing interfaces
predominates for a time period, the following strategy might serve well: maintain
only one consistent facet at a time, the one corresponding to the version interface
that was used most frequently in the recent past. (For example, maintain facet
A, until such time as the B interface is used three times consecutively, at which
point begin maintaining facet B.)

If the space cost on maintaining multiple facets is prohibitive, then the program-
mer has to struggle between emulation and converting strategies. The optimal
solution (ignoring administrative costs) would be to emulate the new interface
until it becomes clear that conversion would be more efficient. A family of on-
line algorithms working on this premise are possible. However, all require a cost
model for the conversion and emulation strategies, which is being developed by
the author.

Elaborations on such schemes will be a subject of another paper.

24

Conclusions and Summary

In this paper, we have described a specification model for schema evolution that has
the following features:

o Schema versioning instead of modification to a single schema, so that program
compatibility can be supported, if desired. Schema versioning also permits mul-
tiple views of the database to co-exist indefinitely.

¢ Compatibility support is provided at less runtime cost than the Encore facility.
For each version of a class, each instance has a corresponding facet. For attributes
which can be derived solely from attributes from other facets, this facility is like
a cache, sacrificing space for time. For attributes which are not reflected in the
representation of the versions, the facet provides space for the value to stored,
thereby preserving information that would be lost under a conversion scheme.

o A broader variety of evolutions are supported than in existing systems (ORION,
GemStone, Encore). All evolutions involving changes to a single class are sup-
ported, and future extensions have been described that will add support for some
more complex evolutions (e.g., telescoping).

o It is possible to evolve a class’s interface without consideration to the classes
which inherit it (i.e., subtypes in our paper), but with some unfortunate results.
It would be better to evolve the subclasses in tandem with their parent.

¢ Tuning of the adaptation scheme by the programmer is possible, allowing the
programmer to decide how much duplication of information is present in each
(multifaceted) instance. If one version is used very infrequently, the programmer
can save space and time, by emulating its interface instead. And, as has already
been mentioned, compatibility need not be supported at all if it is not desired.

Acknowledgements

I am grateful to James H. Morris, and especially to Michael Horowitz, for the relevaat
comments and criticisms they provided during the writing of this paper.

25

26

References

[1] Arnold, R. S. Tutorial on Software Restructuring. Institute of Electrical and
Electronic Engineers. IEEE Society Press, Washington, DC, 1986.

[2] Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. Semantics and Implementa-
tion of Schema Evolution in Object-Oriented Databases. in: Proceedings of the
SIGMOD International Conference on Management of Data, edited by
U. Dayal and I. Traiger. San Francisco, CA, 1987.

[3] Bertino, E. 1992. Personal Communication.

[4] Bertino, E. A View Mechanism for Object-Oriented Databases. in: Advances in
Database Technology — EDBT ’92 International Conference on Extend-
ing Database Technology, edited by . Vienna, Austria, 1992, pp. 136-151.

[5] Bratsberg, S. E. Unified Class Evolution by Object-Oriented Views. in: Proceed-
ings of the 11th International Conference on the Entity-Relationship
Approach. 1992. to appear.

[6] Bretl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams,
E. H., and Williams, M. The GemStone Data Management System. in: Object-
Oriented Concepts, Databases and Applications, edited by W. Kim and
F. H. Lochovsky. Addison-Wesley, Reading, MA, 1989.

[7] Casais, E. Managing Class Evolution in Object-Oriented Systems. in: Object
Management, edited by D. C. Tsichritzis. Universite de Geneve, Centre Univer-
sitaire d’Informatique, Geneva, 1990, pp. 133-195.

[8] Casais, E. Managing Evolution in Object Oriented Environments: An Algorithmic
Approach, ScD. Thesis. Université de Genéve, Geneva, 1991.

[9] Delcourt, C. and Zicari, R. The Design of an Integrity Consistency Checker (ICC)
Jor an Object Oriented Database System. in: Proccedings of the European
Conference on Object-Oriented Programming (ECOOP). Lecture Notes
in Computer Science, vol. 512, Springer-Verlag, Geneva, Switzerland, 1991. A
more detailed version is available as [10].

[10] Delcourt, C. and Zicari, R. The Design of an Integrity Consistency Checker (ICC)
Jor an Object Oriented Database System. Dipartimento di Elettronica Technical
Report, no. 91.021, Politecnico di Milano, Milan, Italy, 1991. A short version of
this paper appears in the 1991 ECOOP proceedings.

27

